
Daoyuan Wang (Intel)
Yuanjian Li (Baidu)

OAP: Optimized Analytics
Package for Spark Platform

Notice and Disclaimers:
• Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be

claimed as the property of others.
See Trademarks on intel.com for full list of Intel trademarks.

• Optimization Notice:
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors
not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

• Intel technologies may require enabled hardware, specific software, or services activation. Check with your system
manufacturer or retailer.

• No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.

• You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
• The products described may contain design defects or errors known as errata which may cause the product to deviate from

publish.

About me
Daoyuan Wang
• developer@Intel
• Focuses on Spark

optimization
• An active Spark

contributor since 2014

Yuanjian Li
• Baidu INF distributed

computation
• Apache Spark

contributor
• Baidu Spark team

leader

Agenda
• Background for OAP
• Key features
• Benchmark
• OAP and Spark in Baidu
• Future plans

Agenda
• Background for OAP
• Key features
• Benchmark
• OAP and Spark in Baidu
• Future plans

Data Analytics in Big Data Definition
• People wants OLAP

against large dataset
as fast as possible.

• People wants extract
information from new
coming data as soon
as possible.

Data Analytics Acceleration is
Required by Spark Users

http://cdn2.hubspot.net/hubfs/438089/DataBricks_Surveys_-_Content/2016_Spark_Survey/2016_Spark_Infographic.pdf

Emerging hardware technology
Intel® Optane™ Technology
Data Center Solutions

Accelerate applications for
fast caching and storage,
reduce transaction costs for
latency-sensitive workloads
and increase scale per server.
Intel® Optane™ technology
allows data centers to deploy
bigger and more affordable
datasets to gain new insights
from large memory pools.

Our proposal – OAP
Spark* Job Server

Spark SQL / Structured Streaming / Core

Cassandra* HBase*Redis*Alluxio*

HDFS* S3* … Storage Layer

Hive* Table Parquet * JSON * ORC * Redis *
Connector

Cassandra *
Connector

OAP (Codename “Spinach”)

• Indexed Data Source / Cache Aware
• RDMA, QAT, ISA-L, FPGA …

• User Customized Indices
• Columnar formats & support Parquet, ORC
• Runtime Computing V.S. Data Store

• Columnar Fine-grained Cache
• Spark Executor in-process Cache
• 3D Xpoint (APP Direct Mode)

• Auto tuning based on periodical job history
• K8S Integration / AES-NI Encryption

Why OAP

Low cost

• Makes full use of
existing hardware

• Open source

Good
Performance

• Index just like
traditional database

• Up to 5x boost in
real-world

Easy to Use

• Easy to deploy
• Easy to maintain
• Easy to learn

Agenda
• Background for OAP
• Key features
• Benchmark
• OAP and Spark in Baidu
• Future plans

A Simple Example
1. Run with OAP

$SPARK_HOME/sbin/start-thriftserver --package oap.jar;
2. Create a OAP table

beeline> CREATE TABLE src(a: Int, b: String) USING spn;
3. Create a single column B+ Tree index

beeline> CREATE SINDEX idx_1 ON src (a) USING BTREE;
4. Insert data

beeline> INSERT INTO TABLE src SELECT key, value FROM xxx;
5. Refresh index

beeline> REFRESH SINDEX on src;
6. Execution would automatically utilize index

beeline> SELECT MAX(value), MIN(value) FROM src WHERE a > 100 and a <
1000;

OAP Files and Fibers

Column (Fiber) #1

Column (Fiber) #2

Column (Fiber) #N
RowGroup #1

…

RowGroup #2

RowGroup #N

Index meta

statistics

Index data
structure

(Index Fiber)

One Index file
for every data
file

Index meta

statistics

Index data
structure

(Index Fiber)

OAP meta file

OAP data
files

OAP
index files

OAP
index files

14

OAP Internals - index
Spark predicate

push down FilteredScan

Read OAP Meta

Available
index?

read statistics
before use index

Get Local RowID
from index

Full table scan

Access data file for
RowIDs directly

Y

N

OAP cached access

Index selection

Supports Btree Index
and BitMap Index, find
best match among all

created indices

Supports statistics such
as MinMax, PartbyValue,

Sample, BloomFilter

Only reads data fibers
we need and puts those

fibers into cache (in-
memory fiber)

OAP compatible layer

RowGroup #k

RowGroup #1

RowGroup #2

Parquet compatible layer

Read row #m from parquet file

Find Row group #k

Read row group and
get specific rows

Parquet data file

C
ache

OAP Data locality

Spark	as	a	Service

Meta Data

FiberCacheManager
Executor

Index

Storage(HDFS	/	S3	/	OSS)

SpinachContext	(Driver)

FiberSensor

HeartBeat

Agenda
• Background for OAP
• Key features
• Benchmark
• OAP and Spark in Baidu
• Future plans

Performance
72.083

7.095
2.304

0

10

20

30

40

50

60

70

80

Parquet Vectorized Read OAP Indexed Read OAP Indexed Read with
Fiber Cache

Q
ue

ry
 T

im
e

(s
ec

on
ds

)

OAP Index And Cache PerformanceCluster:
1 Master + 2 Slaves

Hardware:
CPU – 2x E5-2699 v4
RAM – 256 GB
Storage – S3610 1.6TB

Data:
300GB (Compressed Parquet)
2 Billion Records

Agenda
• Background for OAP
• Key features
• Benchmark
• OAP and Spark in Baidu
• Future plans

Spark In Baidu

• Spark import to Baidu
• Version: 0.8

80
1000

3000

6500

50 300

1500

5800

0
1000
2000
3000
4000
5000
6000
7000

Nodes Jobs/day

2014 2015 2016 2017

• Build standalone
cluster

• Integratewith in-
houseFS\Pub-
Sub\DW

• Version: 1.4

• Build Cluster over
YARN

• Integratewith in-
houseResource
Scheduler System

• Version: 1.6

• SQL\Graph Service
over Spark

• OAP
• Version: 2.1

Baidu Big SQL
Ba

id
u

Bi
g

SQ
L

Web UI Restful API

BBS HTTPServer

BBS Worker BBS Worker BBS Worker

BBS Master

Cache & Index Layer(OAP)

Spark Over Yarn

Roll Up Table Layer

API Layer:
• Meta Control API
• Job API:
Load\Export\Query\Inde
x Control

Control Layer:
• Meta Control
• Job Scheduler
• Spark Driver
• Query Classification

Boosting Layer:
• Roll Up Table

Management
• Roll Up Query

Change
• Index Create\Update
• CacheHit

Baidu Big SQL

Query Physical Queue(FAIR)

Import Physical Queues

BBS Worker

Big Query
Pool Small Query Pool Index Create

Pool

BBS Master

Import Physical Queues
Load Physical Queues

Spark Over YARN

Data Sources

Logs DW

Load Job

alter table create indexclassify query

Resource Management & Isolation

Query Job

Introductory Story

Introductory Story
Get the top 10

charge sum and
correspond

advertiser which
triggered by the

query word‘flower’

• Create index on ‘userid’ column
• Various index types to choose for

different fields types
• ×5 speed boosting than native

spark sql, ×80 thanMR Job
• 3 day baidu charging log, 4TB

data,70000+ files, query time in
10~15s

Roll Up Table Layer

date userid searchid baiduid cmatch

…
…

shows clicks charge

1 1 1 10 2 10 1 5
1 1 2 11 3 10 1 5
1 1 3 12 2 10 1 5
1 1 4 13 1 10 1 5
1 1 5 14 1 10 1 5
1 2 6 14 2 10 1 5
1 2 7 15 3 10 1 5
1 2 8 16 4 10 1 5
1 2 9 17 5 10 1 5

700+ Columns

99% query only use <10 columns

Select date,userid,shows,clicks,charge from…

date userid shows clicks charge
1 1 50 5 25
1 2 40 4 20

Multi Roll Up Table
(user-transparent)

date cmatch shows clicks charge
1 1 20 2 10
1 2 30 3 15
1 3 20 2 10
1 4 10 1 5
1 5 10 1 5

OAP In BigSQL

… Name Department Age …

… … … … …

… John INF 35 …

… Michelle AI-Lab 29 …

… Amy INF 42 …

… Kim AI-Lab 27 …

… Mary AI-Lab 47 …

… … … … …

D
at

a
Fi

le

In
de

x
Fi

le

Sorted Age Row Index
in Data File

27 3

29 1

35 0

42 2

45 4

Department Bit Array

INF 10100

AI-Lab 01011

Index Build

N
or

m
al

 T
ab

le
 S

ca
n

U
se

 In
de

x

Skippable Reader

Select xxx from xxx where age > 29 and department in (INF, AI-Lab)

OAP In BigSQL

… Name Department Age …

… … … … …

… John INF 35 …

… Michelle AI-Lab 29 …

… Amy INF 42 …

… Kim AI-Lab 27 …

… Mary AI-Lab 47 …

… … … … …

D
at

a
Fi

le

In
 M

em
or

y
C

ac
he

Load Cache

Department Row Index
in Data File

INF 2

AI-Lab 3

Age Row Index
in Data File

35 0

29 1

BBS’s Contribute to Spark
• Spark-4502
Spark SQL reads unneccesary nested fields from Parquet

• Spark-18700
getCached in HiveMetastoreCatalog not thread safe cause driver OOM

• Spark-20408
Get glob path in parallel to reduce resolve relation time

• …

Agenda
• Background for OAP
• Key features
• Benchmark
• OAP and Spark in Baidu
• Future plans

Future plans
• Compatible with more data formats
• Explicit cache and cache management
• Optimize SQL operators (join, aggregate) with index
• Integrate with structured streaming
• Utilize Latest hardware technology, such as Intel QAT

or 3D XPoint.
• Welcome to contribute!
https://github.com/Intel-bigdata/OAP

Thank You.
daoyuan.wang@intel.com
liyuanjian@baidu.com

