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Motivations for Native SQL Engine

• Issue of current Spark SQL Engine:

▪ Internal row based, difficult to use SIMD optimizations

▪ High GC Overhead under low memory

▪ JIT code quality relies on JVM, hard to tune

▪ High overhead of integration with other native library



Proposed Solution

Issue of current Spark SQL Engine:

▪ Internal row based, not possible to use SIMD  

→ Columnar-based Arrow Format 

▪ High GC Overhead under low memory 

→ native codes for core compute instead of java

▪ JIT code quality relies on JVM, hard to tune 

→ cpp / llvm / assembly code generation

▪ High overhead of integration with other native 

library

→ Lightweighted JNI based call framework

Source: https://www.slideshare.net/dremio/apache-arrow-an-overview



Native SQL Engine Layers
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• A standard columnar data format as basic data format

• Data keeps on off-heap, data operations offload to highly optimized native library



Data Format
Row RDD Column RDD Optimal Column RDD

iter iter

next()

iter

• Auto split and coalesce

• Tunable batch size

next()

next()

next()



Columnar Spark Plan Rules
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Columnar Whole Stage Codegen
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Native SQL Engine Design

▪ Columnar Data Source
▪ Columnar Shuffle
▪ Columnar Compute
▪ Memory Management



Spark Internal Format

UnsafeRow

Columnar Data Source

Columnized Format

(parquet, orc)

Column to Row?

Spark used a virtual 

way to treat column 

data as row, while 

memory is not 

adjacent
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Columnar Data Source

11

Spark Arrow DataSource

(pyspark, thriftserver, sparksql,…)

Arrow Java Datasets API

(Zero data copy, memory 
reference only)

Arrow C++ Datasets API

(HDFS, localFS, S3A)

(Parquet, ORC, CSV, ..)



▪ Features
▪ Fast / Parallel / Auth supported Native Libraries for HDFS / S3A / Local FS
▪ PushDown supported Pre-executed statistics/metadata filters
▪ Partitioned File and DPP enabled

Columnar Data Source
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unread ID = 7500

ID = 7500

Truncated 
Files



Columnar Shuffle

• Hash-based partitioning(split) with 
LLVM optimized execution

• Ser/de-ser based on arrow record 
batch

• Efficient data compression for 
different data format

• Coalesce batches during shuffle read
• Supports Adaptive Query 

Execution(AQE)
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Supported SQL Operators Overview
Operators
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UnionExec

ExpandExec

SortExec

ScalarSubquery

ProjectExec

ShuffledHashJoin

BroadcastJoinExec

FilterExec

ShuffleExchangeExec

BroadcastExchangeExec

datasources.v2.BatchScanExec

datasources.v1.FileScanExec

HashAggregateExec

…..

Expression

NormalizeNaNAndZero

Subtract

Substring

ShiftRight

Round

PromotePrecision

Multiply

Literal

LessThanOrEqual

LessThan

KnownFloatingPointNormalized

IsNull

And

Add

….

Expression

IsNotNull

GreaterThanOrEqual

GreaterThan

EqualTo

ExtractYear

Divide

Concat

Coalesce

CheckOverflow

Cast

CaseWhen

BitwiseAnd

AttributeReference

Alias

….

Automatically fallback to row-based execution if there are unsupported operators/expressions



ColumnarCondProjection

Columnar Projector & Filter

▪ LLVM IR based execution w/ AVX optimized 
code 

▪ Based on Arrow Gandiva, extended with 
more functions

▪ Combined filter & projection into 
CondProjector

▪ ColumnarBatch based execution

Scan B

Filter

ColumnarExchange

Projection

Example:
If (Field_A + Field_B + Field_C) as Field_new > Field_D

output [Field_new, Field_A, Field_B, Field_C, Field_D]

LLVM
IR

One call



Native Hashmap

▪ Faster Hashmap building and 
lookup w/ AVX optimizations

▪ Compatible with Spark’s 
murmurhash if configured 

▪ Performance benefits for 
HashAggregation and HashJoins
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Filter

BoradcastHashJoin

HashAggregate
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ShuffleExchange

HashAggregate



Stage

ColumnarExchange

Stage
Columnar

BroadcastExchange

Stage

ColumnarShuffleReader

ColumnarBroadcastHashJoin
Broadcast data consists of

1. HashMap (key -> indices)

2. Arrow RecordBatch

using ColumnarBroadcastExchange, 

data size is reduced by 80%
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Native Sort

▪ Faster sort implementation w/ 
AVX optimizations

▪ Most powerful algorithms used for 
different data structures

▪ Performance benefits for sort and 
sort merge joins
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Stage

ColumnarSortMergeJoin

ColumnarExchange

… …
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ColumnarSort and ColumnarSortMergeJoin
3 implementation of sort

1. One column data sort(used by semi or anti)

-> inplace radix sort (AVX optimizable)

2. One column of key with multiple columns of payload

-> radix sort to indices (AVX optimizable)

-> lazy materialization

3. Multiple columns of keys with payloads

-> codegened quick sort to indices(AVX optimizable)

-> lazy materialization

AVX optimized project {

chain key_0 in left table #1

apply project

compare  key_0 and key_1 in right table #2

apply condition

materialize one line to arrow

}



Stage
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Code generated Cpp codes
1. Build HashRelation #0

2. Build HashRelation #1

3. Build HashRelation #2

Loop keys_arrays {

probe key_0 in HashRelation #0

apply Project

probe  key_1 in HashRelation #1

apply condition

probe key_2 in HashRelation #2

materialize one line to arrow 

}

AVX optimized {

probe key_0 in HashRelation #0

apply project

probe  key_1 in HashRelation #1

apply condition

probe key_2 in HashRelation #2

materialize one line to arrow

}

g++ compilation



Native SQL engine call flow
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Memory Management

SparkTaskMemoryManager ArrowAllocationManager
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Example run of TPCH-Q4



Summary

▪ AVX instructions can greatly improve performance on SQL workloads
▪ Native SQL is open sourced. For more details please visit: 

https://github.com/Intel-bigdata/OAP
▪ Native SQL engine is under heavy development, works for TPC-

H/TPC-DS now 

https://github.com/Intel-bigdata/OAP


Q&A



Feedback

Your feedback is important to us.

Don’t forget to rate
and review the sessions.



Legal Information: Benchmark and Performance 
Disclaimers
▪ Performance results are based on testing as of Feb. 2019 & Aug 2020 and 

may not reflect all publicly available security updates. See configuration 
disclosure for details. No product can be absolutely secure.

▪ Software and workloads used in performance tests may have been 
optimized for performance only on Intel microprocessors. Performance 
tests, such as SYSmark and MobileMark, are measured using specific 
computer systems, components, software, operations and functions. Any 
change to any of those factors may cause the results to vary. You should 
consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of 
that product when combined with other products. For more information, 
see Performance Benchmark Test Disclosure.

▪ Configurations:  see performance benchmark test configurations. 
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