
Building a SIMD supported
vectorized native engine for
Spark SQL
Chendi Xue(chendi.xue@intel.com), Software Engineer
Yuan Zhou(yuan.zhou@intel.com), Software Engineer
Intel Corp

Agenda

▪ Native SQL Engine Introduction
▪ Native SQL Engine Design

▪ Columnar Data Source
▪ Columnar Shuffle
▪ Columnar Compute
▪ Memory Management

▪ Summary

Motivations for Native SQL Engine

• Issue of current Spark SQL Engine:

▪ Internal row based, difficult to use SIMD optimizations

▪ High GC Overhead under low memory

▪ JIT code quality relies on JVM, hard to tune

▪ High overhead of integration with other native library

Proposed Solution

Issue of current Spark SQL Engine:

▪ Internal row based, not possible to use SIMD

→ Columnar-based Arrow Format

▪ High GC Overhead under low memory

→ native codes for core compute instead of java

▪ JIT code quality relies on JVM, hard to tune

→ cpp / llvm / assembly code generation

▪ High overhead of integration with other native

library

→ Lightweighted JNI based call framework

Source: https://www.slideshare.net/dremio/apache-arrow-an-overview

Native SQL Engine Layers

Physical Plan Execution

Columnar PluginJVM SQL Engine

Row Column
Conversion

Operator
strategy
(Cost /

Support)

Spark Application

SQL Python APP Java/Scala APP R APP

Native Arrow Data Source

ColumnarCompute Memory
Management

UDF Cache Scheduler

DAOS / HDFS /
S3 / KUDU /

LOCALFS / …

Parquet /
ORC / CSV /
JASON / …

Query Plan Optimization

ColumnarRules ColumnarCollapseRules ColumnarAQERules

WSCG join/sort/aggr/proj/…

PUSHDOWN
Native Compute
JNI WRAPPER

Native Shuffle

LLVM
Gandiva

CPP Code
Generator

pre-
compiled

kernels

Spark
Compatible

Partition

Streamer /
Compressed
Serialization

Optimal
Batch

Memory
Manage /
Register

• A standard columnar data format as basic data format

• Data keeps on off-heap, data operations offload to highly optimized native library

Data Format
Row RDD Column RDD Optimal Column RDD

iter iter

next()

iter

• Auto split and coalesce

• Tunable batch size

next()

next()

next()

Columnar Spark Plan Rules
Parser Analyzer Optimizer Planner Query Execution

SQL

Dataset

DataFrame

Unresolved

Logical Plan

Logical

Plan
Optimized

Logical Plan

Physical

Plan

Selected

Physical Plans
RDD

C
o

s
t

M
o

d
e

l

Metadata

Catalog

Cache

Manager

Spark

Native Engine
SQL

Dataset

DataFrame

Unresolved

Logical Plan

Logical

Plan
Optimized

Logical Plan

Physical

Plan

Selected

Physical PlansC
o

s
t

M
o

d
e

l

Metadata

Catalog

Cache

Manager
ColumnarAQE

Native SQL Engine

ColumnarPlan

ColumnarWSCG
LLVM/SIMD

Kernel

Columnar Whole Stage Codegen
JVM Native

Stage1 Evaluate
Parquet Read

Filter

Columnar

Shuffle

Columnar Exchange

operator

Columnar

Shuffle

Stage2 Evaluate
Parquet Read

Hash Join

Aggregate

Columnar Exchange

operator

Columnar

Aggregate
Aggregate

JVM Native

Stage1 Evaluate Parquet Read

Gandiva Filter

Columnar

Shuffle

Columnar Exchange

operator

HashJoin

Aggregate

Columnar

Shuffle

Stage2 Evaluate Parquet Read

Columnar Exchange

operator

Columnar

Aggregate
Aggregate

Native SQL Engine Design

▪ Columnar Data Source
▪ Columnar Shuffle
▪ Columnar Compute
▪ Memory Management

Spark Internal Format

UnsafeRow

Columnar Data Source

Columnized Format

(parquet, orc)

Column to Row?

Spark used a virtual

way to treat column

data as row, while

memory is not

adjacent

Row-based Data Source Arrow based Data Source

Arrow Format

MetaData

Parquet orc csv

kudu cassandra HBase

RowBased Format

(csv, …)

Unify and fastJSON

V.S.

Columnar Data Source

11

Spark Arrow DataSource

(pyspark, thriftserver, sparksql,…)

Arrow Java Datasets API

(Zero data copy, memory
reference only)

Arrow C++ Datasets API

(HDFS, localFS, S3A)

(Parquet, ORC, CSV, ..)

▪ Features
▪ Fast / Parallel / Auth supported Native Libraries for HDFS / S3A / Local FS
▪ PushDown supported Pre-executed statistics/metadata filters
▪ Partitioned File and DPP enabled

Columnar Data Source

0 <= ID < 5000

5000 <= ID < 10000

unread ID = 7500

ID = 7500

Truncated
Files

Columnar Shuffle

• Hash-based partitioning(split) with
LLVM optimized execution

• Ser/de-ser based on arrow record
batch

• Efficient data compression for
different data format

• Coalesce batches during shuffle read
• Supports Adaptive Query

Execution(AQE)

ColumnarExchange

Mapper

ColumnarExchange

Reducer

compressed

file

compressed

file

compressed

file

compressed

file

CoalesceBatches

Hash based partition

Supported SQL Operators Overview
Operators

WindowExec

UnionExec

ExpandExec

SortExec

ScalarSubquery

ProjectExec

ShuffledHashJoin

BroadcastJoinExec

FilterExec

ShuffleExchangeExec

BroadcastExchangeExec

datasources.v2.BatchScanExec

datasources.v1.FileScanExec

HashAggregateExec

…..

Expression

NormalizeNaNAndZero

Subtract

Substring

ShiftRight

Round

PromotePrecision

Multiply

Literal

LessThanOrEqual

LessThan

KnownFloatingPointNormalized

IsNull

And

Add

….

Expression

IsNotNull

GreaterThanOrEqual

GreaterThan

EqualTo

ExtractYear

Divide

Concat

Coalesce

CheckOverflow

Cast

CaseWhen

BitwiseAnd

AttributeReference

Alias

….

Automatically fallback to row-based execution if there are unsupported operators/expressions

ColumnarCondProjection

Columnar Projector & Filter

▪ LLVM IR based execution w/ AVX optimized
code

▪ Based on Arrow Gandiva, extended with
more functions

▪ Combined filter & projection into
CondProjector

▪ ColumnarBatch based execution

Scan B

Filter

ColumnarExchange

Projection

Example:
If (Field_A + Field_B + Field_C) as Field_new > Field_D

output [Field_new, Field_A, Field_B, Field_C, Field_D]

LLVM
IR

One call

Native Hashmap

▪ Faster Hashmap building and
lookup w/ AVX optimizations

▪ Compatible with Spark’s
murmurhash if configured

▪ Performance benefits for
HashAggregation and HashJoins

Scan A

Scan B

Filter

BoradcastHashJoin

HashAggregate

BoradcastExchange

ShuffleExchange

HashAggregate

Stage

ColumnarExchange

Stage
Columnar

BroadcastExchange

Stage

ColumnarShuffleReader

ColumnarBroadcastHashJoin
Broadcast data consists of

1. HashMap (key -> indices)

2. Arrow RecordBatch

using ColumnarBroadcastExchange,

data size is reduced by 80%

Stage

ColumnarBroadcastJoin

ColumnarExchange

… …

ColumnarShuffleReader

hash payload

0x8198 <0, 0>, key1
0x7723 <0, 1>,key2

… …

0x6388
<10240, 1076>

Key1076

0x9944
<10240, 1077>

Key1077

0x8761
<10240, 1078>

key1078

+

Native Sort

▪ Faster sort implementation w/
AVX optimizations

▪ Most powerful algorithms used for
different data structures

▪ Performance benefits for sort and
sort merge joins

Scan A Scan B

CondProjection

SortMergeJoin

Exchange

CondProjection

Exchange

Sort Sort

Exchange

Sort

Stage

ColumnarSortMergeJoin

ColumnarExchange

… …

Stage

ColumnarSort

Stage

Columnarsort

Stage

ColumnarShuffleReader

ColumnarSort and ColumnarSortMergeJoin
3 implementation of sort

1. One column data sort(used by semi or anti)

-> inplace radix sort (AVX optimizable)

2. One column of key with multiple columns of payload

-> radix sort to indices (AVX optimizable)

-> lazy materialization

3. Multiple columns of keys with payloads

-> codegened quick sort to indices(AVX optimizable)

-> lazy materialization

AVX optimized project {

chain key_0 in left table #1

apply project

compare key_0 and key_1 in right table #2

apply condition

materialize one line to arrow

}

Stage

ColumnarExchange

Stage

ColumnarBroadcastExchange

Stage

ColumnarBroadcastExchange

Stage

ColumnarExchange

Stage

ColumnarShuffleReader

Stage

ColumnarShuffleReader

ColumnarShuffledHashJoin

ColumnarProject

ColumnarBroadcastJoin

ColumnarFilter

ColumnarBroadcastJoin

ColumnarExchange

Columnar WholeStageCodeGen

WSCG

Code generated Cpp codes
1. Build HashRelation #0

2. Build HashRelation #1

3. Build HashRelation #2

Loop keys_arrays {

probe key_0 in HashRelation #0

apply Project

probe key_1 in HashRelation #1

apply condition

probe key_2 in HashRelation #2

materialize one line to arrow

}

AVX optimized {

probe key_0 in HashRelation #0

apply project

probe key_1 in HashRelation #1

apply condition

probe key_2 in HashRelation #2

materialize one line to arrow

}

g++ compilation

Native SQL engine call flow
Spark Context
Executor

Oap-native-sql
executeColumnar().mapPartitions

JniWrapper

Expression
Tree

RecordBatch

Gandiva

Native SQL Engine

CPPCodeGenerator

RecordBatch

Expression Input Output

Precompiled kernels

Memory Management

SparkTaskMemoryManager ArrowAllocationManager

Native MemoryDirect MemoryJVM Memory

[java] Spark.TaskMemoryManager [Java] arrow.AllocationManager [cpp] arrow::MemoryPool

register

grant

spill

Data
Source

Column
Project

Column
Sort

Column
Shuffle

Column
Reader

Native
Memory

Native
Memory

Direct
Memory

Direct
Memory

Direct
Memory

Column
To Row

JVM
Memory

Row
TakeOrdered
AndProject

JVM
Memory

Column
BHJ

Native
Memory

release release release release release release

Data
retain hashMap

Example run of TPCH-Q4

Summary

▪ AVX instructions can greatly improve performance on SQL workloads
▪ Native SQL is open sourced. For more details please visit:

https://github.com/Intel-bigdata/OAP
▪ Native SQL engine is under heavy development, works for TPC-

H/TPC-DS now

https://github.com/Intel-bigdata/OAP

Q&A

Feedback

Your feedback is important to us.

Don’t forget to rate
and review the sessions.

Legal Information: Benchmark and Performance
Disclaimers
▪ Performance results are based on testing as of Feb. 2019 & Aug 2020 and

may not reflect all publicly available security updates. See configuration
disclosure for details. No product can be absolutely secure.

▪ Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more information,
see Performance Benchmark Test Disclosure.

▪ Configurations: see performance benchmark test configurations.

Notices and Disclaimers

▪ No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

▪ Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as
any warranty arising from course of performance, course of dealing, or usage in trade.

▪ This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative
to obtain the latest forecast, schedule, specifications and roadmaps.

▪ The products and services described may contain defects or errors known as errata which may
cause deviations from published specifications. Current characterized errata are available on
request.

▪ Intel, the Intel logo, Xeon, Optane, Optane Persistent Memory are trademarks of Intel Corporation
in the U.S. and/or other countries.

▪ *Other names and brands may be claimed as the property of others
▪ © Intel Corporation.

