ACCELERATE YOUR SPARK
USING INTEL" OPTANE™ DC PERSISTENT MEMORY

Cheng Xu, Intel

Nov, 2018

mailto:Cheng.a.xu@intel.com

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other
countries.

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

AGENDA

Challenges in Data Analytics
Intel® Optane™ DC Persistent Memory (DCPMM)
Introduction to PMDK library

Spark DCPMM optimizations

Future And Other DCPMM Optimization Work

Let's talk about Storage

Let's talk about Memory

Summary Metrics for 2592 Completed Tasks

Metric

Duration

Scheduler Delay

Task Deserialization Time
GC Time

Result Serialization Time
Getting Result Time

Peak Execution Memory
Shuffle Read Blocked Time

Shuffle Read Size /
Records

Shuffle Remote Reads
Shuffle spill (memory)
Shuffle spill (disk)

CHALLENGES IN DATA ANALYTICS

Data Analytic is MEMORY sensitive because it's critical for

Min
2ms
7ms
2ms
0ms
0ms
0ms
64.0 KB
0ms

0.0B/0

0.0B
0.0B
0.0B

Performance : Spark SQL is already blazing fast but sometimes

Memory bound (e.g. Unnecessary spills for Q67* - Data skew)

25th percentile
6ms

03s

5ms

0ms

0ms

0ms

64.0 KB

0ms

00B/0

0.0B
0.0B
0.0B

TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4 NVMe SSD)

6000000
5000000
o 4000000
>
= 3000000
%
< 2000000
1000000
0
Median
8 ms
04s
7ms
0ms
1ms
0ms
64.0 KB
0ms
0.0B/0
0.08B
0.08B
0.08B

Disk Bandwidth

75th percentile

01s
06s

95 ms
0ms
1ms
0ms
64.0 KB
0Oms
00B/0

0.0B
0.0B
0.0B

Max

36 min

08s

02s

4.1 min

14 ms

0oms

14.1 GB

05s

11.8 GB / 192677917

1.7 GB
65.8 GB
19.4 GB

e Sum of rkB/s

== Sum of wkB/s

CHALLENGES IN DATA ANALYTICS

Data Analytic is MEMORY sensitive because it's critical for

« Performance : Spark SQL is already blazing fast but sometimes

- Or even faster with extra DRAM as I/O cache (e.g. I/O cache for Q44%)

Q44 Cpu Utilization Q44 Disk Bandwidth
150 [0 wait u Average of %idie 2000000 Disk bandwidth up to 7GB/s per node
100 m Average of B%steal 6000000 v -‘ M‘-"'\
4000000 ¥ Sum of rkB/s
50 = Average of %iowait v \
2000000 Sum of wkB/s
Average of %nice 0 ‘\, \"\
0 A
0 4 81216202428323640444852566064 B Average of Yosystem -1 3 7 111519232731353943475155596367

TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4 NVMe SSD)

CHALLENGES IN DATA ANALYTICS

Data Analytics is facing DILEMMA and tradeoff for

Performance VS. Durable:

Checkpoint for iterative computation (e.g. Persisted checkpoint in Spark)
Or Recovery Log Flush Frequency (e.g. Kafka recovery log flush frequency)

Scale out VS. Scale up:

Better TCO

Extra cost for scale out, sometimes lower utilization

On heap VS. off heap

GC VS. Self-managed memory

TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4 NVMe SSD)

=)

=)

=)

Persistent!
Performance!

Cheaper!

Easy to usel

Answer?

REIMAGINING THE DATA CENTER MEMORY AND STORAGE HIERARCHY

COLD

HDD/TAPE

https://www.itprotoday.com/high-speed-storage/3d-xpoint-memory-how-intel-bringing-persistent-storage-motherboard intel" l 10

INTEL OPTANE DC PERSISTENT MEMORY

Big and Affordable Memory 128, 256,512GB

High Performance Storage | DDR4 Pin Compatible

EEEIN

Direct Load/Store Access & g Hardware Encryption

Native Persistence High Reliability

Performance of DCPMM vs. NAND

[:l - Internal [l - Platform Link Xfer & Protocol [:I - Driver . - File System / Stack

Q.
Q.
<
Eo
L\J
- o
-
v
—
Q
A
(1+]
et |

NVMe NAND SSD Intel* Optane™ SSD Intet®* DIMM
(4kB read) (4kB read) (648 read)

https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel intel" l

Then how to use It?

CONCEPT - DAX

BlDCk I/ (simpNied)
Fi le Persis -ent

Applications Management Block Maidy

buffereeHe * mmap directio lW { Application] [Application { Application !]
Load/Store

File Systems... —I—/ 'y
Standard Standard Standard

Raw Devi i §
* | - axlccee:slce File API File API Jser
‘waManagementLlibrary { pace

Page Cache I ——— M -
Fo 5 23 File Syst'm : PersistAent MMU'
emory Aware i

Block /(JLayer: Request Queue _) ¢ & - J
TP NVDIMMDeviceriver 3T] ke
I — ¢pace

. Cach
Pseudo dev'ces (MD/DM - opt10n4l) Line4/0
| Block 1/0 Logic | J

* I * I * Non-Volatile Memor’ éNVDlMM

ysical devices I ______

N\ J

Normal I/O Path

PMDK: ASUITE OF OPEN SOURCE OF LIBRARIES

{cH] { c }Java ' Python |

Link to Open Source
http://pmem.io/PMDK/

____________ - _________/
Application
Load/Store
Standard 4
File API User
- Space
Support
Transactions
v N
' pmem-Aware MMU
. J appings |
- Ib pmemobj File System Mappings |
Kernel
Space
Support for
volatile
memory Low-level support
usage NVDIMM
memkind

Link to Intel Developer Zone
In De_/el?prrlen'f https://software.intel.com/en-
us/persistent-memory

http://pmem.io/nvml/
https://software.intel.com/en-us/persistent-memory

#include <stdio. h>

#include <stdlib. h>
#include <string. h>

tinclude <libvmem. h>

- Memkind supports the traditional malloc/free interfaces on a int
: main(int arge, char *argv[])
memory mapped file {
]] VMEM skvmp;
- Use persistent memory as volatile memory char #ptr;
- Old name was libmem /* create minimum size pool of memory */

if ((vmp = vmem create (”/pmem—fs”,
VMEM_MIN_POOL)) == NULL) {
perror ("vmem create”) ;

exit(1);

}

if ((ptr = vmem malloc(vmp, 100)) == NULL) {

perror (“vmem malloc”) ;
exit(1);
}

strepy (ptr, “hello, world”);

/* give the memory back */
vmem free(vmp, ptr);

VA N
}

https://github.com/memkind/memkind

WHY PMDK

Built on top of SNIA Programming Model

Simplifies/Facilitates Persistent Memory
Programming Adoption with Higher
Level Language Support

e (C,C++, Java

* No Changes to Compiler or Programming
Language

 Abstracts details about

* Types of Flush commands supported by
CPU

 Size of Atomic Stores

https://www.snia.org/

Provides API to

Allocate/Manage Persistent Memory Pools
* Uses memory-mapping

* In-place update

Transactional Operations

* Keeps Data Consistent and Durable
during Application Crashes

* Flushes processor caches

* Power Fail Atomicity

Builds on DAX capabilities in both Linux and
Windows

How About Spark?

Spark DCPMM Optimization Overview

. Spark
Inp%DaV 9 1/0 intensive : J_L ﬁ Intermediate

Workload (from TPC-
DS)

A =
Terasort Workload

I
1
I
I
I
1
'D
I
I
I
: Shuffle
I
I
I
I
1
I
I
I
I

OAP Cache

RDD Cache

Low Bdndwidth 10 storage (e g. HDD IS3)
L .

r

|

|

|

|

|

|

|

|

| i |

| | |]

| | | |

| | | Servi |

I I | K-means Workload ervice I

1 Cache Hit Cache Miss | : s 1

I . 'I\ Tied Storage ! Persistent Storage I

o N | | ! . Compute Layer
1= 1 [~ ittt L1y e . 2 i ey
| 1 I |

l l | : | 1O Laye I
| 1 I |

I I I ! I

: OAP DCPMM optimization (Against ! RDD cache DCPMM optimization (Against Shuffle DCPMM optimization (Against Disk
, DRAM) : DRAM): lO): _

I = * High Capacity, Less Cache Miss I y Reduce DRAM footprint » Lower latency than disk

| ™ * Avoid heavy cost disk read | n Higher Capacity to cache more data o Need to use persistent mode

1 1 1 " 1 e Status: Ongoing

| 1 I | |]

| | | | 1 |

| 1 I | |

I || . : N\ Z] | I I

| 1 I : | |

| DRAM | 1 DRAM : 1 1

| 1 I | |

! ! ! J T ! A 4 !

| ||] I :] - I

| 1 | 1

| | 1 |

N 1 1 1

OAP Overview

QAP

. Indexed Data Source / Cache Aware
QAT ISA-L,

OAP Optimizer & Execution

Cache Index Optimized Strategy

+ User customized index
* Columnar format. also support Parguet
and

OAP Unified Cache Representation Adaptor

Columnar fine-grained cache
Cache in executor’s off-heap memory
3D Xpoint (APP Direct Mode)

Collaborating with Baidu, Intel invented OAP in 2016 and open source in 2017
OAP provides optimizations like cache and index to accelerate Spark SQL

In Baidu’s Phoenix Hive advertising system, based on a trillion daily clicks and ad effectiveness analysis. OAP
raised query performance 5x compared with native Spark SQL.

g BB

i@l 20

OAP Architecture

Spark Driver (OAPContext)

Index & Cache aware OAP Data Source Strategy OAP DDL Fiber Sensor & Metrics
Optimization Strategy (index/cache/metric)

Spark Executor (1)

|IA Accelerated / Cache / Index / Cost aware Operators
Spark Executor (2)

Order By Aggregation Join

OAP EndPoint

Spark Executor (3)

Unified Representation Cache Metrics

Fiber CacheManager Cache Statistic & Spark Executor (...)

Control
Data Source Adapter Index

OAP File Read/Write BitMap Index
Parquet File Reader Btree Index

ORC File Reader Index Sz.am.ple/
Statistic

OAP Components — Cache (Report & Schedule)

Executor #1
FiberCacheManager

Report

Task #1
Read Data Column B in

Row Group A,B,C in File FiberSensor

SC/, @O'(//
e

FileToHostMap

File X -> Executor #1
File Y -> Executor #2 Schedule

Executor #2
FiberCacheManager

File Z -> Executor #N

Task #2
Read Data Column B in

Row Group A,B,Cin File '
Y Executor #N
FiberCacheManager

-~
.

Gl

DCPMM Enabling For OAP 1/O Cache

Intel Optane DC
ﬂser \ Persistent Memory LRU Cache

Row Group or
Stripe Further

Allocator Computation

Address »

Spark

|

q/ Heap

|
serialization

JVM Off-Heap g:;z g:)urce
i e Storage =
Row Group or ata
Stripe

\Kernel j
N

byte o mey

Kmeans in Spar

N iterations
il R I I I R I I I - -~y @S NN BN EEN BN BN BN S S ‘\ Py > » F ¥ F ¥ K N ¥ ¥ ¥ ¥ ¥ N ¥ N ¥ N ¥ ¥ N §J N ¥ ¥ N ¥ K ¥ F N N N J
\\ P 9 ,,¢
\ ,/ Step 1: For each record in the cache, Sum the
: vectors with the same closet centroid

For Each Record in the
Cache

Cache #1
(DRAM + DISK)

For Each Record in the
Cache

Cache #2
(DRAM + DISK)

2 lterations for all

of the cache data

\

|

1

|

|

1

|

|

|

|

|

T

|

|

|

1 Sync
to get the K }

|

|

|

|

T

|

|

|

|

i

|

|

|

|

1

y

For Each Record in the
Cache

Cache #3
(DRAM + DISK)

Update the new Centroids

centroids in a
random mode

For Each Record in the
Cache

LI L L T T T O rNTTTTTT I
o T e — F\

Cache #N For Each Record in the
(DRAM + DISK) Cache
Spark Executor Processes \
s, s C,, Cs Csy ... Cy
\- _____________ —’/ \\ ----------- ’l \N--_-_-_-_-_-_-_-_-_-_:.-.,-_,...._..'..'v-',..“‘-.,.,.r:”
Load Random Initial Centroids Train

Load the data from HDFS to DRAM (and AEP / SSD if DRAM cannot hold all of the data)(Load), after that, the data will not be changed, and will
be iterated repeatedly in Initialization and Train stages.

Intel Confidential

Kmeans Basic Data Flow

K centroids
,C,, Cs, ... Load

e Load data from HDFS to memory.
« Spill over to local storage

Initialization

« Compute using initial centroid based

Storage on data in memory or local storage

Train

« Compute iterations based on local
data

Intel Confidential

Implement Details For DCPMM Enabling

HDFS RDD Cached RDD Input RDD

— 2) s ™ —)

 — | — » Kmeans Training
| — | E—
1 _ 1 :— |

I % A J N —— 4 —— Record(Vector)

Read records from Read from cached — : N
HDFS and cache RDD and parse L 5 A partition of records
partition into off- the address into

heap(DCPMM or iterator of vectors C] RDD

PRAM) Record(OFF-HEAP Address)

Intel Confidential - CNDA intel" l 26

Future Or Other related Work

Future or Other DCPMM Optimization Work

. Spark « HBase

* Intel Optane DC persistent based WALess with DCPMM

checkpoint e Block cache

* Broadcast join

 Push based shuffle DCPMM
optimization

* Kudu
* block cache using DCPMM

 Hadoop
« DCPMM based cache

