
Cheng Xu, Intel

cheng.a.xu@intel.com

Nov, 2018

mailto:Cheng.a.xu@intel.com

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other
countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

Challenges in Data Analytics

Intel® Optane™ DC Persistent Memory (DCPMM)

Introduction to PMDK library

Spark DCPMM optimizations

Future And Other DCPMM Optimization Work

3

Agenda

4

Let’s talk about Storage

5

Let’s talk about Memory

Data Analytic is MEMORY sensitive because it’s critical for

• Performance : Spark SQL is already blazing fast but sometimes

- Memory bound (e.g. Unnecessary spills for Q67* - Data skew)

- Or even faster with extra DRAM as I/O cache (e.g. I/O cache for Q44* or avoid)

6

challenges in data analytics

TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4 NVMe SSD)

0

1000000

2000000

3000000

4000000

5000000

6000000

-1

2
2

2

4
5

0

7
0

6

9
3

8

1
1

6
7

1
3

9
0

1
6

1
3

1
8

3
7

2
0

6
0

2
2

8
3

2
5

0
7

2
7

3
2

2
9

5
5

A
x

is
 T

it
le

Disk Bandwidth

Sum of rkB/s

Sum of wkB/s
Spills

Data Analytic is MEMORY sensitive because it’s critical for

• Performance : Spark SQL is already blazing fast but sometimes

- Memory bound (e.g. Unnecessary spills for Q67* - Data skew)

- Or even faster with extra DRAM as I/O cache (e.g. I/O cache for Q44*)

7

challenges in data analytics

TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4 NVMe SSD)

Disk bandwidth up to 7GB/s per node
I/O wait

Data Analytics is facing DILEMMA and tradeoff for

• Performance VS. Durable:

- Checkpoint for iterative computation (e.g. Persisted checkpoint in Spark)

- Or Recovery Log Flush Frequency (e.g. Kafka recovery log flush frequency)

• Scale out VS. Scale up:

- Better TCO

- Extra cost for scale out, sometimes lower utilization

• On heap VS. off heap

- GC VS. Self-managed memory

8

challenges in data Analytics

TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4 NVMe SSD)

Persistent!
Performance!

Cheaper!

Easy to use!

9

Answer?

10https://www.itprotoday.com/high-speed-storage/3d-xpoint-memory-how-intel-bringing-persistent-storage-motherboard

Reimagining the data center memory and storage hierarchy

Big and Affordable Memory

High Performance Storage

Direct Load/Store Access

128, 256, 512GB

High Reliability

Hardware Encryption

DDR4 Pin Compatible

Native Persistence

Intel optane dc persistent memory

Performance of DCPMM vs. NAND

https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel

13

Then how to use it?

14

Normal I/O Path PMDK I/O Path

Concept - DAX

Support for

volatile
memory

usage

PMDK : A Suite of Open Source of Libraries

15

memkind

Low level

support for

local persistent

memory

libpmem

Low level
support for

remote access
to persistent

memory

librpmem

In Development

Link to Open Source :

http://pmem.io/PMDK/

NVDIMM

User
Space

Kernel
Space

Application

Load/Store

Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Interface to create

arrays of pmem-

resident blocks of

same size for

atomic updates

Interface for

persistent memory

allocation,

transactions and

general facilities

Interface to create

a persistent

memory resident

log file

libpmemblklibpmemlog libpmemobj

Link to Intel Developer Zone:

https://software.intel.com/en-

us/persistent-memory

Support
Transactions

C++ C Java Python

Low-level support

http://pmem.io/nvml/
https://software.intel.com/en-us/persistent-memory

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <libvmem.h>

int
main(int argc, char *argv[])
{
VMEM *vmp;
char *ptr;

/* create minimum size pool of memory */
if ((vmp = vmem_create("/pmem-fs",
VMEM_MIN_POOL)) == NULL) {
perror("vmem_create");
exit(1);
}

if ((ptr = vmem_malloc(vmp, 100)) == NULL) {

perror("vmem_malloc");
exit(1);
}

strcpy(ptr, "hello, world");

/* give the memory back */
vmem_free(vmp, ptr);

/* ... */
}

- Memkind supports the traditional malloc/free interfaces on a
memory mapped file

- Use persistent memory as volatile memory

- Old name was libmem

Memkind library

https://github.com/memkind/memkind

17

• Built on top of SNIA Programming Model

• Simplifies/Facilitates Persistent Memory
Programming Adoption with Higher
Level Language Support

• C, C++, Java

• No Changes to Compiler or Programming
Language

• Abstracts details about

• Types of Flush commands supported by
CPU

• Size of Atomic Stores

• Provides API to

• Allocate/Manage Persistent Memory Pools

• Uses memory-mapping

• In-place update

• Transactional Operations

• Keeps Data Consistent and Durable
during Application Crashes

• Flushes processor caches

• Power Fail Atomicity

• Builds on DAX capabilities in both Linux and
Windows

Why PMDK

https://www.snia.org/

18

How About Spark?

Low Bandwidth IO storage (e.g. HDD, S3)

Shuffle
Service

RDD Cache

Spark DCPMM Optimization Overview

OAP Cache

DRAM

IO Layer

Compute Layer

Spark

Input Data

Cache Hit Cache Miss

Intermediate Data

DRAM

Tied Storage

RDD cache DCPMM optimization (Against
DRAM):
● Reduce DRAM footprint
● Higher Capacity to cache more data

Shuffle DCPMM optimization (Against Disk
IO):
● Lower latency than disk
● Need to use persistent mode
● Status: Ongoing

OAP DCPMM optimization (Against
DRAM)
● High Capacity, Less Cache Miss
● Avoid heavy cost disk read

9 I/O intensive
Workload (from TPC-
DS)

K-means Workload

Terasort Workload

Persistent Storage

OAP Overview

20

 Collaborating with Baidu, Intel invented OAP in 2016 and open source in 2017
 OAP provides optimizations like cache and index to accelerate Spark SQL
 In Baidu’s Phoenix Hive advertising system, based on a trillion daily clicks and ad effectiveness analysis. OAP

raised query performance 5x compared with native Spark SQL.

OAP Architecture

21

Spark Driver (OAPContext)

Index & Cache aware
Optimization Strategy

OAP Data Source Strategy OAP DDL
(index/cache/metric)

Spark Executor (1)

Unified Representation Cache

IndexData Source Adapter

OAP File Read/Write

Parquet File Reader

ORC File Reader

Fiber Sensor & Metrics

Fiber CacheManager

BitMap Index

Btree Index

OAP EndPoint

Metrics

Cache Statistic &
Control

IA Accelerated / Cache / Index / Cost aware Operators

Order By Aggregation Join ……

Index Sample /
Statistic

Spark Executor (2)

Spark Executor (….)

Spark Executor (3)

22

OAP Components – Cache (Report & Schedule)

FiberSensor
Executor #1

FiberCacheManager

Task #1
Read Data Column B in
Row Group A,B,C in File

X

Task #2
Read Data Column B in
Row Group A,B,C in File

Y Executor #N
FiberCacheManager

Executor #2
FiberCacheManager

FileToHostMap

File X -> Executor #1
File Y -> Executor #2

…
File Z -> Executor #N

Schedule

Report

Report

Report

23

DCPMM Enabling For OAP I/O Cache

Intel Optane DC
Persistent Memory

…

Storage

…

LRU Cache

Allocator

User

Spark

JVM Heap

JVM Off-Heap

serialization

obj

byte

Kernel

byte

Read Write

Row Group or
Stripe

…

…

Row Group or
Stripe

…

Further
Computation

Data Source
Reader

Address

Data

24

Kmeans in Spark

M0 - Mj

Mj+1 - Mk

Mk+1 - Mm

…

Mx+1 - Mn

HDFS

Cache #1
(DRAM + DISK)

Cache #2
(DRAM + DISK)

Cache #3
(DRAM + DISK)

…

Cache #N
(DRAM + DISK)

Spark Executor Processes

Loading
Normalization
Caching

C1, C2, C3, … CK

For Each Record in the
Cache

For Each Record in the
Cache

For Each Record in the
Cache

For Each Record in the
Cache

For Each Record in the
Cache

Step 1: For each record in the cache, Sum the
vectors with the same closet centroid

Update the new Centroids

Step 2: Sum the vectors according to
the centroids and find out the new

centroids globally

Sync

N iterations

Load Train

Intel Confidential

Random Initial Centroids

2 Iterations for all
of the cache data

to get the K
centroids in a
random mode

Load the data from HDFS to DRAM (and AEP / SSD if DRAM cannot hold all of the data)(Load), after that, the data will not be changed, and will
be iterated repeatedly in Initialization and Train stages.

Compute
Node

25

Kmeans Basic Data Flow

• Load data from HDFS to memory.

• Spill over to local storage

Load

• Compute using initial centroid based
on data in memory or local storage

Initialization

• Compute iterations based on local
data

Train

Intel Confidential

CPU

Memory

Storage
Local

Shared

Compute
Node

CPU

Memory

Storage
Local

Shared

Compute
Node

CPU

Memory

Storage
Local

Shared

HDFS

… …

K centroids
C1, C2, C3, … CK

1
2

3

1

2

3

26

Implement Details For DCPMM Enabling

Intel Confidential - CNDA

……

Address1

Address2

Addressn

……

HDFS RDD Cached RDD Input RDD

Kmeans Training

……

Record(Vector)

A partition of records

RDD

Record(OFF-HEAP Address)

Read records from
HDFS and cache
partition into off-
heap(DCPMM or
DRAM)

Read from cached
RDD and parse
the address into
iterator of vectors

27

Future Or Other related Work

28

Future or Other DCPMM Optimization Work

• Spark

• Intel Optane DC persistent based
checkpoint

• Broadcast join

• Push based shuffle DCPMM
optimization

• Hadoop

• DCPMM based cache

• HBase

• WALess with DCPMM

• Block cache

• Kudu

• block cache using DCPMM

