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Let's talk about Storage




Let's talk about Memory




Summary Metrics for 2592 Completed Tasks

Metric

Duration

Scheduler Delay

Task Deserialization Time
GC Time

Result Serialization Time
Getting Result Time

Peak Execution Memory
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Shuffle Read Size /
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Shuffle spill (disk)

CHALLENGES IN DATA ANALYTICS

Data Analytic is MEMORY sensitive because it's critical for
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Performance : Spark SQL is already blazing fast but sometimes

Memory bound (e.g. Unnecessary spills for Q67* - Data skew)
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CHALLENGES IN DATA ANALYTICS

Data Analytic is MEMORY sensitive because it's critical for

« Performance : Spark SQL is already blazing fast but sometimes

- Or even faster with extra DRAM as I/O cache (e.g. I/O cache for Q44%)
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*TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4* NVMe SSD)



CHALLENGES IN DATA ANALYTICS

Data Analytics is facing DILEMMA and tradeoff for

Performance VS. Durable:

Checkpoint for iterative computation (e.g. Persisted checkpoint in Spark)
Or Recovery Log Flush Frequency (e.g. Kafka recovery log flush frequency)

Scale out VS. Scale up:

Better TCO

Extra cost for scale out, sometimes lower utilization

On heap VS. off heap

GC VS. Self-managed memory

*TPC-DS 30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4* NVMe SSD)
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Persistent!
Performance!

Cheaper!

Easy to usel




Answer?




REIMAGINING THE DATA CENTER MEMORY AND STORAGE HIERARCHY

COLD

HDD/TAPE

https://www.itprotoday.com/high-speed-storage/3d-xpoint-memory-how-intel-bringing-persistent-storage-motherboard intel" l 10



INTEL OPTANE DC PERSISTENT MEMORY

Big and Affordable Memory 128, 256,512GB

High Performance Storage | DDR4 Pin Compatible

EEEIN

Direct Load/Store Access & g Hardware Encryption

Native Persistence High Reliability




Performance of DCPMM vs. NAND
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https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel intel" l




Then how to use It?




CONCEPT - DAX
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PMDK: ASUITE OF OPEN SOURCE OF LIBRARIES

{cH] { c }Java ' Python |

Link to Open Source
http://pmem.io/PMDK/

____________ - \_________/
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Link to Intel Developer Zone
In De\_/el?prrlen'f https://software.intel.com/en-
us/persistent-memory



http://pmem.io/nvml/
https://software.intel.com/en-us/persistent-memory

#include <stdio. h>

#include <stdlib. h>
#include <string. h>

tinclude <libvmem. h>

- Memkind supports the traditional malloc/free interfaces on a int
: main(int arge, char *argv[])
memory mapped file {
] ] VMEM skvmp;
- Use persistent memory as volatile memory char #ptr;
- Old name was libmem /* create minimum size pool of memory */

if ((vmp = vmem create (”/pmem—fs”,
VMEM_MIN_POOL)) == NULL) {
perror ("vmem create”) ;

exit(1);

}

if ((ptr = vmem malloc(vmp, 100)) == NULL) {

perror (“vmem malloc”) ;
exit(1);
}

strepy (ptr, “hello, world”);

/* give the memory back */
vmem free(vmp, ptr);

VA N
}



https://github.com/memkind/memkind

WHY PMDK

Built on top of SNIA Programming Model

Simplifies/Facilitates Persistent Memory
Programming Adoption with Higher
Level Language Support

e (C,C++, Java

* No Changes to Compiler or Programming
Language

 Abstracts details about

* Types of Flush commands supported by
CPU

 Size of Atomic Stores

https://www.snia.org/

Provides API to

Allocate/Manage Persistent Memory Pools
* Uses memory-mapping

* In-place update

Transactional Operations

* Keeps Data Consistent and Durable
during Application Crashes

* Flushes processor caches

* Power Fail Atomicity

Builds on DAX capabilities in both Linux and
Windows




How About Spark?




Spark DCPMM Optimization Overview

. Spark
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OAP Overview

QAP

. Indexed Data Source / Cache Aware
QAT ISA-L,

OAP Optimizer & Execution

Cache Index Optimized Strategy

+  User customized index
*  Columnar format. also support Parguet
and

OAP Unified Cache Representation Adaptor

Columnar fine-grained cache
Cache in executor’s off-heap memory
3D Xpoint (APP Direct Mode)

Collaborating with Baidu, Intel invented OAP in 2016 and open source in 2017
OAP provides optimizations like cache and index to accelerate Spark SQL

In Baidu’s Phoenix Hive advertising system, based on a trillion daily clicks and ad effectiveness analysis. OAP
raised query performance 5x compared with native Spark SQL.

g BB

i@l 20




OAP Architecture

Spark Driver (OAPContext)

Index & Cache aware OAP Data Source Strategy OAP DDL Fiber Sensor & Metrics
Optimization Strategy (index/cache/metric)

Spark Executor (1)

|IA Accelerated / Cache / Index / Cost aware Operators
Spark Executor (2)

Order By Aggregation Join

OAP EndPoint

Spark Executor (3)

Unified Representation Cache Metrics

Fiber CacheManager Cache Statistic & Spark Executor (...)

Control
Data Source Adapter Index

OAP File Read/Write BitMap Index
Parquet File Reader Btree Index

ORC File Reader Index Sz.am.ple/
Statistic




OAP Components — Cache (Report & Schedule)

Executor #1
FiberCacheManager

Report

Task #1
Read Data Column B in

Row Group A,B,C in File FiberSensor

SC/, @O'(//
e

FileToHostMap

File X -> Executor #1
File Y -> Executor #2 Schedule

Executor #2
FiberCacheManager

File Z -> Executor #N

Task #2
Read Data Column B in

Row Group A,B,Cin File '
Y Executor #N
FiberCacheManager
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DCPMM Enabling For OAP 1/O Cache

Intel Optane DC
ﬂser \ Persistent Memory LRU Cache

Row Group or
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Kmeans in Spar
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For Each Record in the
Cache

Cache #3
(DRAM + DISK)

Update the new Centroids

centroids in a
random mode

For Each Record in the
Cache
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Cache #N For Each Record in the
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Spark Executor Processes \
s, s C,, Cs Csy ... Cy
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Load Random Initial Centroids Train

Load the data from HDFS to DRAM (and AEP / SSD if DRAM cannot hold all of the data)(Load), after that, the data will not be changed, and will
be iterated repeatedly in Initialization and Train stages.

Intel Confidential




Kmeans Basic Data Flow

K centroids
,C,, Cs, ... Load

e Load data from HDFS to memory.
« Spill over to local storage

Initialization

« Compute using initial centroid based

Storage on data in memory or local storage

Train

« Compute iterations based on local
data

Intel Confidential




Implement Details For DCPMM Enabling

HDFS RDD Cached RDD Input RDD

— 2) s ™ — )

 — | — » Kmeans Training
| — | E—
1 _ 1 :— |

I % A J N —— 4 —— Record(Vector)

Read records from Read from cached — : N
HDFS and cache RDD and parse L 5 A partition of records
partition into off- the address into

heap(DCPMM or iterator of vectors C] RDD

PRAM) Record(OFF-HEAP Address)

Intel Confidential - CNDA intel" l 26




Future Or Other related Work




Future or Other DCPMM Optimization Work

. Spark « HBase

* Intel Optane DC persistent based  WALess with DCPMM

checkpoint e Block cache

* Broadcast join

 Push based shuffle DCPMM
optimization

* Kudu
* block cache using DCPMM

 Hadoop
« DCPMM based cache






