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Challenges in Data Analytics

Intel® Optane™ DC Persistent Memory (DCPMM)

Introduction to PMDK library

Spark DCPMM optimizations

Future And Other DCPMM Optimization Work
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Agenda
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Let’s talk about Storage
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Let’s talk about Memory



Data Analytic is MEMORY sensitive because it’s critical for

• Performance : Spark SQL is already blazing fast but sometimes

- Memory bound (e.g. Unnecessary spills for Q67* - Data skew)

- Or even faster with extra DRAM as I/O cache (e.g. I/O cache for Q44* or avoid)
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challenges in data analytics

*TPC-DS  30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4* NVMe SSD)
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Data Analytic is MEMORY sensitive because it’s critical for

• Performance : Spark SQL is already blazing fast but sometimes

- Memory bound (e.g. Unnecessary spills for Q67* - Data skew)

- Or even faster with extra DRAM as I/O cache (e.g. I/O cache for Q44*)
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challenges in data analytics

*TPC-DS  30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4* NVMe SSD)

Disk bandwidth up to 7GB/s per node
I/O wait



Data Analytics is facing DILEMMA and tradeoff for

• Performance VS. Durable:

- Checkpoint for iterative computation (e.g. Persisted checkpoint in Spark)

- Or Recovery Log Flush Frequency (e.g. Kafka recovery log flush frequency)

• Scale out VS. Scale up: 

- Better TCO

- Extra cost for scale out, sometimes lower utilization

• On heap VS. off heap

- GC VS. Self-managed memory
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challenges in data Analytics

*TPC-DS  30 TB SF, 10 nodes cluster, 64 CPU cores, 384GB DRAM, 4* NVMe SSD)

Persistent!
Performance!

Cheaper!

Easy to use!
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Answer?



10https://www.itprotoday.com/high-speed-storage/3d-xpoint-memory-how-intel-bringing-persistent-storage-motherboard

Reimagining the data center memory and storage hierarchy



Big and Affordable Memory

High Performance Storage 

Direct Load/Store Access

128, 256, 512GB

High Reliability

Hardware Encryption

DDR4 Pin Compatible

Native Persistence

Intel optane dc persistent memory



Performance of DCPMM vs. NAND 

https://software.intel.com/en-us/articles/introduction-to-programming-with-persistent-memory-from-intel
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Then how to use it?
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Normal I/O Path PMDK I/O Path

Concept - DAX



Support for 

volatile
memory 

usage

PMDK : A Suite of Open Source of Libraries
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memkind

Low level 

support for 

local persistent 

memory

libpmem

Low level 
support for 

remote access 
to persistent 

memory

librpmem

In Development

Link to Open Source  : 

http://pmem.io/PMDK/

NVDIMM

User
Space

Kernel
Space

Application

Load/Store

Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Interface to create 

arrays of pmem-

resident blocks of 

same size for 

atomic updates

Interface for 

persistent memory 

allocation, 

transactions and 

general facilities

Interface to create 

a persistent 

memory resident 

log file

libpmemblklibpmemlog libpmemobj

Link to Intel Developer Zone: 

https://software.intel.com/en-

us/persistent-memory

Support 
Transactions

C++ C Java Python

Low-level support

http://pmem.io/nvml/
https://software.intel.com/en-us/persistent-memory


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <libvmem.h>

int
main(int argc, char *argv[])
{
VMEM *vmp;
char *ptr;

/* create minimum size pool of memory */
if ((vmp = vmem_create("/pmem-fs",
VMEM_MIN_POOL)) == NULL) {
perror("vmem_create");
exit(1);
}

if ((ptr = vmem_malloc(vmp, 100)) == NULL) {

perror("vmem_malloc");
exit(1);
}

strcpy(ptr, "hello, world");

/* give the memory back */
vmem_free(vmp, ptr);

/* ... */
}

- Memkind supports the traditional malloc/free interfaces on a 
memory mapped file

- Use persistent memory as volatile memory

- Old name was libmem

Memkind library

https://github.com/memkind/memkind
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• Built on top of SNIA Programming Model

• Simplifies/Facilitates Persistent Memory 
Programming Adoption with Higher 
Level Language Support 

• C, C++, Java

• No Changes to Compiler or Programming 
Language

• Abstracts details about 

• Types of Flush commands supported by 
CPU

• Size of Atomic Stores

• Provides API to

• Allocate/Manage Persistent Memory Pools

• Uses memory-mapping

• In-place update

• Transactional Operations

• Keeps Data Consistent and Durable 
during Application Crashes

• Flushes processor caches

• Power Fail Atomicity

• Builds on DAX capabilities in both Linux and 
Windows

Why PMDK 

https://www.snia.org/
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How About Spark?



Low Bandwidth IO storage (e.g. HDD, S3)

Shuffle 
Service

RDD Cache

Spark DCPMM Optimization Overview

OAP Cache

DRAM

IO Layer

Compute Layer

Spark

Input Data

Cache Hit Cache Miss

Intermediate Data

DRAM

Tied Storage

RDD cache DCPMM optimization (Against 
DRAM):
● Reduce DRAM footprint
● Higher Capacity to cache more data

Shuffle DCPMM optimization (Against Disk 
IO):
● Lower latency than disk
● Need to use persistent mode
● Status: Ongoing

OAP DCPMM optimization (Against 
DRAM)
● High Capacity, Less Cache Miss
● Avoid heavy cost disk read

9 I/O intensive 
Workload (from TPC-
DS)

K-means Workload

Terasort Workload

Persistent Storage



OAP Overview
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 Collaborating with Baidu, Intel invented OAP in 2016 and open source in 2017
 OAP provides optimizations like cache and index to accelerate Spark SQL
 In Baidu’s Phoenix Hive advertising system, based on a trillion daily clicks and ad effectiveness analysis. OAP 

raised query performance 5x compared with native Spark SQL.



OAP Architecture
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Spark Driver (OAPContext)

Index & Cache aware 
Optimization Strategy

OAP Data Source Strategy OAP DDL 
(index/cache/metric)

Spark Executor (1)

Unified Representation Cache

IndexData Source Adapter

OAP File Read/Write

Parquet File Reader

ORC File Reader

Fiber Sensor & Metrics

Fiber CacheManager

BitMap Index

Btree Index

OAP EndPoint

Metrics

Cache Statistic & 
Control

IA Accelerated / Cache / Index / Cost aware Operators

Order By Aggregation Join ……

Index Sample / 
Statistic

Spark Executor (2)

Spark Executor (….)

Spark Executor (3)
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OAP Components – Cache (Report & Schedule)

FiberSensor
Executor #1

FiberCacheManager

Task #1
Read Data Column B in 
Row Group A,B,C in File 

X

Task #2
Read Data Column B in 
Row Group A,B,C in File 

Y Executor #N
FiberCacheManager

Executor #2
FiberCacheManager

FileToHostMap

File X -> Executor #1
File Y -> Executor #2

…
File Z -> Executor #N

Schedule

Report

Report

Report
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DCPMM Enabling For OAP I/O Cache

Intel Optane DC 
Persistent Memory

…

Storage

…

LRU Cache

Allocator

User

Spark

JVM Heap

JVM Off-Heap

serialization

obj

byte

Kernel

byte

Read Write

Row Group or 
Stripe

…

…

Row Group or 
Stripe

…

Further 
Computation

Data Source
Reader

Address

Data
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Kmeans in Spark

M0 - Mj

Mj+1 - Mk

Mk+1 - Mm

…

Mx+1 - Mn

HDFS

Cache #1 
(DRAM + DISK)

Cache #2 
(DRAM + DISK)

Cache #3 
(DRAM + DISK)

…

Cache #N 
(DRAM + DISK)

Spark Executor Processes

Loading
Normalization
Caching

C1, C2, C3, … CK

For Each Record in the 
Cache

For Each Record in the 
Cache

For Each Record in the 
Cache

For Each Record in the 
Cache

For Each Record in the 
Cache

Step 1: For each record in the cache, Sum the 
vectors with the same closet centroid

Update the new Centroids

Step 2: Sum the vectors according to 
the centroids and find out the new 

centroids globally

Sync

N iterations

Load Train

Intel Confidential

Random Initial Centroids

2 Iterations for all 
of the cache data 

to get the K 
centroids in a 
random mode

Load the data from HDFS to DRAM (and AEP / SSD if DRAM cannot hold all of the data)(Load), after that, the data will not be changed, and will 
be iterated repeatedly in Initialization and Train stages.



Compute 
Node
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Kmeans Basic Data Flow

• Load data from HDFS to memory. 

• Spill over to local storage

Load

• Compute using initial centroid based 
on data in memory or local storage

Initialization

• Compute iterations based on local 
data

Train

Intel Confidential

CPU

Memory

Storage
Local

Shared

Compute 
Node

CPU

Memory

Storage
Local

Shared

Compute 
Node

CPU

Memory

Storage
Local

Shared

HDFS

… …

K centroids
C1, C2, C3, … CK

1
2

3

1

2

3
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Implement Details For DCPMM Enabling

Intel Confidential - CNDA

……

Address1

Address2

Addressn

……

HDFS RDD Cached RDD Input RDD

Kmeans Training

……

Record(Vector)

A partition of records

RDD

Record(OFF-HEAP Address)

Read records from 
HDFS and cache 
partition into off-
heap(DCPMM or 
DRAM)

Read from cached 
RDD and parse 
the address into 
iterator of vectors
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Future Or Other related Work
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Future or Other DCPMM Optimization Work

• Spark

• Intel Optane DC persistent based 
checkpoint

• Broadcast join

• Push based shuffle DCPMM 
optimization

• Hadoop

• DCPMM based cache

• HBase

• WALess with DCPMM

• Block cache

• Kudu

• block cache using DCPMM




